On holomorphically projective mappings onto almost Hermitian spaces1

نویسندگان

  • Josef Mikeš
  • Olga Pokorná
  • O. Pokorná
چکیده

In this paper we consider holomorphically projective mappings from equiaffine spaces onto almost Hermitian spaces. We found the equations of these mappings in the form of a system of linear Cauchy equations. These results generalize the results obtained for holomorphically projective mappings of Kählerian spaces by J. Mikeš and analogous results about K-spaces and Hspaces obtained by I.N. Kurbatova. We continue the investigation of F-planar mappings onto Hermitian and Riemannian spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Concircular and Torse-forming Vector Fields on Compact Manifolds

In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.

متن کامل

Almost power-Hermitian rings

In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.

متن کامل

Equivariant Holomorphic Morse Inequalities I: A Heat Kernel Proof

Assume that the circle group acts holomorphically on a compact Kähler manifold with isolated fixed points and that the action can be lifted holomorphically to a holomorphic Hermitian vector bundle. We give a heat kernel proof of the equivariant holomorphic Morse inequalities. We use some techniques developed by Bismut and Lebeau. These inequalities, first obtained by Witten using a different ar...

متن کامل

Convexity of Coverings of Projective Varieties and Vanishing Theorems

Let X be a projective manifold, ρ : X̃ → X its universal covering and ρ∗ : V ect(X) → V ect(X̃) the pullback map for isomorphism classes of vector bundles. This article makes the connection between the properties of the pullback map ρ∗ and the properties of the function theory on X̃. Our approach motivates a weakened version of the Shafarevich conjecture: the universal covering X̃ of a projective m...

متن کامل

. SG ] 2 3 Ju n 20 06 Semiclassical almost isometry

Let M be an irreducible n-dimensional complex projective manifold, and A → M an ample line bundle on it. Then there exists an Hermitian metric h on A such that the curvature of the unique compatible covariant derivative is −2πiω, where ω is a Kähler form on M . As is well-known, for k ≫ 0 the full linear series of global holomorphic sections of A⊗k determines a projective embedding φk : M → P (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002